Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 999964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388513

RESUMO

Though the karst regions in south and southwest China are plant diversity hotspots, our understanding of the phylogeography and evolutionary history of the plants there remains limited. The genus Heteroplexis (Asteraceae) is one of the typical representative plants isolated by karst habitat islands, and is also an endangered and endemic plant to China. In this study, species-level phylogeographic analysis of the genus Heteroplexis was conducted using restriction site-associated DNA sequencing (RADseq). The genetic structure showed a clear phylogeographic structure consistent with the current species boundaries in the H. microcephala, H. incana, H. vernonioides, H. sericophylla, and H. impressinervia. The significant global (R = 0.37, P < 0.01) and regional (R = 0.650.95, P < 0.05) isolation by distance (IBD) signals among species indicate strong geographic isolation in the karst mountains, which may result in chronically restricted gene flow and increased genetic drift and differentiation. Furthermore, the phylogeographic structure of Heteroplexis suggested a southward migration since the last glacial period. Demographic analysis revealed the karst mountains as a refuge for Heteroplexis species. Finally, both Treemix and ABBA-BABA statistic detected significant historical gene flow between species. Significant historical gene flow and long-term stability of effective population size (Ne) together explain the high genome-wide genetic diversity among species (π = 0.05370.0838). However, the recent collapse of Ne, widespread inbreeding within populations, and restricted contemporary gene flow suggest that Heteroplexis species are probably facing a high risk of genetic diversity loss. Our results help to understand the evolutionary history of karst plants and guide conservation.

2.
Dalton Trans ; 50(47): 17723-17733, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34812458

RESUMO

Cathodes derived from metal-organic framework materials offer unique advantages in terms of improved structural reversibility and electron conduction efficiency. Nevertheless, the capacity contribution of cathodes based on the carbon framework system has not been clearly discussed or is controversial in aqueous batteries. In this essay, we have uncovered the capacity contribution arising from the adsorption of anions/cations onto the carbon surface by examining the bonds of the carbon and the details of unsteady voltage in the CV/GITT during the discharge. Benefiting from the synergistic contribution of the double-layer capacitance and pseudocapacitance, Zn/C-MnO2 exhibits excellent long-cycling stability and fast kinetics. To the best of our knowledge, this is the first report on the ion adsorption-based double layer effect in aqueous zinc ion batteries. Such a capacity contribution mechanism, and a renewed knowledge of the discharge mechanism, will contribute to the development of high-performance aqueous zinc ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...